A Constrained Neural Network Kalman Filter for Price Estimation in High Frequency Financial Data
نویسندگان
چکیده
In this paper we present a neural network extended Kalman filter for modeling noisy financial time series. The neural network is employed to estimate the nonlinear dynamics of the extended Kalman filter. Conditions for the neural network weight matrix are provided to guarantee the stability of the filter. The extended Kalman filter presented is designed to filter three types of noise commonly observed in financial data: process noise, measurement noise, and arrival noise. The erratic arrival of data (arrival noise) results in the neural network predictions being iterated into the future. Constraining the neural network to have a fixed point at the origin produces better iterated predictions and more stable results. The performance of constrained and unconstrained neural networks within the extended Kalman filter is demonstrated on "Quote" tick data from the $/DM exchange rate (1993-1995).
منابع مشابه
Cross-Sectional Relative Price Variability and Inflation in Turkey: Time Varying Estimation
Abstract This study investigates the empirical validity of the variability hypothesis in Turkey for the period of February 2005-November 2015, by using cross-sectional relative price data and by focusing on the assumptions of linearity and stability. The linearity assumption between the two variables is ensured by estimating quadratic regression equation. The assumption of stability is secur...
متن کاملA Robust Non-linear Multivariate Kalman Filter for Arbitrage Identification in High Frequency Data
We present a methodology for modelling real world high frequency financial data. The methodology copes with the erratic arrival of data and is robust to additive outliers in the data set. Arbitrage pricing relationships are formulated into a linear state space representation. Arbitrage opportunities violate these pricing relationships and are analogous to multivariate additive outliers. Robust ...
متن کاملSensorless Speed Control of Double Star Induction Machine With Five Level DTC Exploiting Neural Network and Extended Kalman Filter
This article presents a sensorless five level DTC control based on neural networks using Extended Kalman Filter (EKF) applied to Double Star Induction Machine (DSIM). The application of the DTC control brings a very interesting solution to the problems of robustness and dynamics. However, this control has some drawbacks such as the uncontrolled of the switching frequency and the strong ripple t...
متن کاملConstrained Nonlinear Estimation of Road Friction Coefficient and Wheel Slip for Control of Anti-Lock Braking System
In designing the anti-lock braking system (ABS), some states and parameters of vehicle system such as road friction of coefficient and wheel slip should be estimated due to lack of cost effective and reliable sensors for direct measurement. Because of nonlinear characteristics of vehicle dynamics and tire forces, development of a nonlinear estimation algorithm is necessary. However, considerati...
متن کاملMotion detection by a moving observer using Kalman filter and neural network in soccer robot
In many autonomous mobile applications, robots must be capable of analyzing motion of moving objects in their environment. Duringmovement of robot the quality of images is affected by quakes of camera which cause high errors in image processing outputs. In thispaper, we propose a novel method to effectively overcome this problem using Neural Networks and Kalman Filtering theory. Thistechnique u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of neural systems
دوره 8 4 شماره
صفحات -
تاریخ انتشار 1997